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Two methods are proposed for successive approximations of the value 
iimction of a pursuit game with limited time and with payoff function 
min,=IO, tl H (5 (r), Y 0% which are used directly for the constructive 
design of successive pursuit and evasion strategies which permit e-optimal 
strategies to be found in any e>o . Necessary and sufficient con- 
ditions for some function to be the value function of the pursuit game 
being analyzed are derived as well. References [l-3] were devoted to 
sequential methods of constructing the value function or the payoff mini- 
max in game problems of encounter at a specified instant. These methods 
were used in [l, 21 to construct maximal stable bridges the strategies 
extremal to which solve the corr~pond~ng problem, as is well known 
from [4]. Sequential procedures for constructing maximal stable bridges 
without a preliminary construction of the value function or the payoff 

minimax also were examined in [a, 21 and in [S]. 

1. Let the motions of a pursuer P and an evader E be described by the equations 

5’ 7 f (z, u), J: E R”, u E Kri 

y’ = g (y, v), y E R’“, u;cz Ks 
(1.1) 

(1.2) 

where Rp C R“ and film C R” are convex compacta. We make the following 
assumptions concerning system ( 1‘ 1) (( 1, 2 ) > : 

a 1 the function f (5, u) (g (y, v)) is defined and continuous on R” X 

Kp (Ii” X KE) and satisiies a local Lipschitz condition in x (y) with a constant not 
depending on u (u); 

b1 \I f (x, 3) jl < h (1 + II II: ii) ( \I #T (Y, rJ> 11 < 1 (‘l + 11 Y ii ))* h > o 
for all (2, u) E R” X KP ((Y, vj E h?” X KE); 

cS the measurable program controls u (s) (u (v)) with values from KP (&) 
are the admissable controls; 

d 1 the set {r’ (5, u) [ u s KP} ({g (y, v) 1 u E KE}) is convex for any 
x E R” (y cz Rm) a 

Further, we assume as specified the initial state (%I, Yo, I’) f~ R” X R” X 
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(R+l \ (0)) of the game, where ~0 C? R’” and go E R” are the initial 
positions of players P and E , while 2” ~3 R,l\{O} (R,I = tt E R1 1 t > 0)) 
is the game’s duration. 

We define the class of strategies of player P (E) as follows. A strategy Uq (VT) 
is an ordered collection of mappings Up = (aq, . . ., a”> ,(V’ = (b’, . . ., b”)) 
given on R* X R” X (R,l \ (0)) . The mapping u” (bZ) for i E [O : q] 

(i E 10 : rf) associates with the state (5, y, t) e R” X R” X (R,” \ (0)) 
an admissable control t~i (+) (Vi (s)) together with its interval IO, ti >, ti E (0, tl, 
where for id: [1 :ql (i c$! [1 : r-1) either [O, ti > = 10, ti), ti E (0. t), or 

[I), ti > = [0, t], while [O, ti > = [O, tfwhen i = 0 . 
Let us explain how the strategy up (V’) is realized in the game from the initial 

state (x0, .$, t”) C.Z fi” X R” X (&.I \ (0)). The mapping aq (ti’) associates 
with the initial state an admissible control % (r), ‘t E [O, t, > f% @), 

7 6% lo, tr >) which determine the solution of Eq. (1.1) ((L 2>) on the appropri- 
ate interval, with the initial condition z (0) = a;” (y (0) = f>. PS a consequenke 
of the assumptions a) - c ) made this solution. exists and is unique on the whole inte- 

val IO, tpl (IO, t,]). Then, when 4 = 0 (r = 0) or when IO, t, > = LO, toI 
f[O, t, > = LO, t”l) by a realization of strategy Up (V’) we mean the correspon- 

ding solution of Eqs.(l. I) ((1.2)). However, when q > 0 (r. > 0) and 

10, t, > = to, t&J, t, E (0, to> (to, t, > = to, t,), t, E (0, 0) 
we consider the state (zQ1, yul, t,l) (&l, yrl, $.l)) which is realized by the 

instant te (t,.). In this state now the mapping a Q-1 (br-1) determines on the correspon- 

ding interval the solution of 9q. (1.1) ((1.2)) with initial condition z (0) = zQ1 (y 

(0) = YT”> by means of the admissible control 2+-i (+) (r&-r ( .)).Continuing 

further, similar arguments convince us that any strategy U (V) in the game from 
the initial state (f, go, 8”) generates, in general, jointly with some strategy V (u) 

the unique solution of Eqs. (1.1) and (( 1.2)): 2 (t) = x (t, cc0 1 U, V) (y (t) = y (t, 

Y” I u9 V) now defined on the whole interval IO, t”], with the initial condition 

a (0) = 2” (Y (0) = y”). (Here we admit that in the formation of this solution some 

of the mappings ui (bi), i E IO : sl, s < q (s < r)may be un~~tial.) 
The payoff function in the game from the initia1 state (x0, y,,, T) in the situation 

(U, V) is defined by the equality 

x (t} = 5 (t, x0 [ U, V)and g (t) = y (t, ~0 1 U, V), where the function 12 (G Ii) 
is defined and continuous on R” X R”. we assume that player &’ maximizes ?.nd 

player P minimizes (I. 3). We note as well that we are examining a game with com- 

plete information, i. e., each player knows the opponent’s dynamics and the game’s 

current state. In addition, if necessary we assume that the players know the entire 

previous history of the game. 
To solve the game from the initial state (x 0, 90, T) we imbed it into a set of 

states Da, where 

Ds= U U 
(I, II, OES&w3. f/o, W’EIO, cl 

P’ (x) x P-” (y) x {f} 
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Ss (x0, y,, T) c I?* x Rrn x R+l is a closed sphere of radius 6 E (0, T] with 
its center at (ZO, y,, T) and I?-~’ (x) (Cf-*’ (y)) is the attainability set of system 

(1. 9 (( 1.2)) from the initial position x (0) = x (y (0) = y) by the instant t - t’. 
With the assumptions a)-d) made the sets C’ (x) (Ct (y)) for any x E .??” (y E I?“) 
and t E B ’ and, consequently, the set &, are compact [6] . We introduce the 
notation Da 

$ 
= {(z, Y, 0 E Ds 1 t > 01. 

2, Definition 1. Let a func_tion w (m) be defined on Da. We say that func- 
tion w (a) belongs to a set w_ (Da) if: 

1) w (3, y, 0) = H (5, y) for any point (z, y, 0) E Da; 

2hiJ(-)EC(Ds) (c(a) is a set of functions continuous on Da 
3) a strategy I” of the player E exists such that the inequalities K (x, y, t 1 

u, V’) > w (4 .Y, t> and w (a: (‘6, 1: 1 u, v’), Y (‘6, Y I UP V’) t - 

T) > w (4 Y, t) for all ‘G E [0, IT’] with some r’, ‘G’ E (0, t] are valid at 
each point (5, y, t) E & for any strategy U of player P . 

Lemma 1. Set w- (Da) is nonempty. 

To prove the lemma it is sufficient to consider the function 

U: ia,, y, t) = max min min H (E(r), q (z)) 
~(~)EAf~u~ Et.EAtW rE[o, tl 

(2.U 

where A’ (z) (At b)> is th e set of solutions of system (1.1) (( 1.2)), realized under 
all possible admissible controls u ( l ) (V ( l )) in the interval [O, t] with the initial 

condition x (Oj = x (y (0) = y). As is well known from [6] if conditions a)-d) are 
fulfilled, the sets Af (s) (Af (y)) for anyJ E I?” (y E R”) and t E R+l are com- 
pact in the metric of the’ space of continuous functions. 

We define an operator @_ : C (DF,) + C (DE) by the following rule: for any func- 
tion w (e) E C (Dfj) 

@_: w (21, y, t) = max max mill (2.2) 
TE[rl, f] ll(.)EA’(II) 5 &A’(y) 

milk (w (5 (r), q (t), t - r), ryOirrI H (E (% ‘1 (@>I 
,T 

We can show that operator’s_ maps space C (Da) into itself. 
Theorem 1. Operator @_ maps w_ (Da) into itself and the inequality 

a_ O w (4) > w (*) is valid for any function w (a) .E w__ (DE) . 
Proof. Let w’ (s) e u’_ (Ds). We show that CD_ o w’ (.) E W_ (Da): 

Taking into account the remark preceding the theorem, it is sufficient to show that 

the function @_ o w’ (.) satisfies condition 3) of Definition 1 because the validity of 
condition 1) of this definition is obvious for function CD_ 9 w’ (e). Since w’ (.) E 

w- (Ds), a strategy V’ of player E exists with properties relative to w’ (9 
formulated in condition 3) of Definition 1. For definiteness let V’ = Vr = (!I’, 

. . ., b”). We shall seek a strategy v’ of player E, with similar properties re- 
lative to function a_ 0 w’ (:),in the form V” = V’+l = (V+l, . . ., 6”). We 
determine the mapping ??+l from the condition that with the point (x; y, t) E Di 
it associates an admissible control V’ (z), -c E [0, T’> to which there corresponds 

a solution q’*(a) E A” (y) realizing jointly with 7;’ the maximum in the right-hand 
side of (2.2) wherein w (. ) should be replaced by W’ (.).We remark that ‘6’ can al- 
ways be chosen as positive ‘because condition 3) of Definition 1 is valid for ~7’ (u) . 



848 S. V. Chistiakov 

Further, we set ?? = b”,i E (0 : rleverywhere on Ds”. 
We shall show that the strategy r’ constructed is the one required. We fix an arbitrary 
stratqy U of player P and an arbitrary point(x, y, t)EDs’.Let E’ (r) = E, (-c, x: 1 U, 

O’), ‘F E IO, 7’1, where ‘6’ is determined by mapping 6”l. It is easy to see that 
we can find a strategy U’ of player P such that 

K (I, y, t ( u, V’) = min {K (E’ (‘t’), q’ (T’), t - T’ 1 U’, V’), 

Qyg’ @)9 7’ @))I 

Hence, taking into account the property of strategy V’ and the selection of control V’ (T), 
a E [O, T’ > by means of mapping 6’+r, we obtain 

K (4 Y, t I u, a’> > min {w’ (E’ (7’), V’ (r’), t - T’), (2.3) 

$:a . ]@ (E’ (@, 7-j ’ @>>) > a- o w’ (4 Y9 0 
-l 

in addition, taking into account that 17 ’ (T) = q (T, y, U’ (s)) = 11 (T, y 1 U. v’), 
a E 10, ‘~‘1, we obtain 

@_ o w’ (5 (‘6, II: I U, V’), q (T, y I U, V’), t - T) > min 
4 (.)EA”(x) 

min {w’ (E (a’), y’ (t’), t - d), 

for all ‘G E [O, ~‘1. Thus, condition 3) of Definition 1 is fulfilled for function 

a_ 0 w’ (.). 
To prove the last assertion of the theorem we note that the inequality 

@_ 0 WI (z, y, t) > min {w’ (4 Y, t), If (4 Y)) 

is valid for any point (z, y, t) E D&n the other hand, allowing for the choice of stra- 

tegy V’ of player E, we obtain H (2, Y) > K (r, Y, t I U, V’) > w’ (2,. 
Y, t). Consequently@_ o w’ (x, y, t) > W’ (X, y, t) at each point (s, y, t) E 

Ds. The theorem is proved. 

We select an arbitrary function wO (.) E W_ (Ds) and we construct successive 
approximations: for n ) 0 

CD_ 0 UI,,_i (*) = IO,, ( * ) 
(2.4) 

We also construct the sequence of strategies {V,},“,, of players i3 : Vo is the strategy 
for which, according to Definition 1, the inequality K (z, y, t 1 U, V,) > w,, (z, y, 

t) is valid at each point (5, y, t) E Ds” for any strategy U of player P; each of the 

strategies V,, n > 0 is constructed according to strategy V+l and according to 

the approximation wn_i (-) in the same way as in Theorem 1. By the construction of the 
sequences {V,},“=, and {r& (.)}& the inequality K (z, y, t J u, V,) > WTI (? y9 

t) is valid at each point (x, Y, t) E Ds’for any n, for any strategy U of player P. 
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Theorem 2. 1. For any initial approximation from W- (Bs) the successive 

approximations (2.4) converge uniformly on Ds to some function w* ( * >. Functionw*( * > 
is continuous on ?& and satisfies the equation 

CD_ 0 w (*) = W(‘) (2.5) 

2. Function w* (s) is the value function of the family r8 of games from initial 
states (2, Y, t) E int &” and, consequently,the limit of the successive approximations 

(2.4) is independent of the initial approximation from w_ (Da). 

8. For any r > 0 there exists II’ such that for n > iii strategy v, is an E -Opti- 
mal strategy for player E in each game of family rs. 

Proof. The proof of the uniform convergence of sequence {w, (. )}% reduces, 

asa consequence of its monoto~ci~ w0 1.) < w1 (+) <, .,, < zr$ (s) &, . . . to 
establishing the uniform boundedness and equicontinuity of the set of functions 

i~~n~~)~r~~~nted here 
The corresponding proof is quite cumbersome and therefore. 

l As a corollary of the uniform convergence we obtain that 

that W* 1.) CG c (Ds), addition, function w* (.) satisfies Eq. (2.5) (it should be no- 

ted here that the operator @_ : c (Do) + c (c,) is continuous). 
Let us show that in each game from the initial state (5, Y, t) ~=int I&” we can 

find, for each e > 0 a pair of strategies V, and Ci,.such that the inequalities 

are valid for any strategies ‘J and v This signifies that W* (*)is the value function of 
the game family rs. The sequence (wn( .)}zzo convergesuniformly to w* (+), there- 
fore, an IV exists such that Y (w* (.) - w, f.)) & E for all n, > N, where v 
is a norm in space c (Ds). Let n, > Iv. We consider an arbitrary point (r, Y, t) CZ 
D&O, then by the choice of no we obtain 

K (2, Y, t I u, VT%,) a Wno (5, Y, t) > w* (29 Y, CJ - e 

for any strategy u of player P. Thus, if we set V, = V,,,, the first of inequalities (2.6) 
is proved. Now we note that if the second of inequalities (2.6) has been proved, the third 
assertion also will ha.ve been proved. Here, however, we shall assume that (3, Y, t) C? 
int Ds”. The construction of a strategy U, for which the second of inequalities (2.6) 

is valid at ii point (x9 Y, t) E int Ds’ does not present fundamental difficulties. In m 
deed, since w* (.) satisfies Eq. (2.Q the corresponding strategy can be constructed by 
using the inequality 

u,$* (.r, Y, t) > mill mitt {u’* (E(z), ‘n(t), t - r), 
E(. )E.A’(.Y) (2.7) 

oEf&iyl H (E v% rl v%)) 
,- 

valid for any (2, Y, t) E DP, 7 E lo, tl and q (.) E AI (y). The formal constmc- 
tion of strategy U, is effected with the aid of an auxiliary game in which knowledge 
of the preceding realization of player E control on some small interval is used and 
whose current state is considered to be the state (E, Y, t - h), E E Chl(X)for a suffi- 
ciently small h >, 0 and,*not the state (a Y, t) of the original game. The latter calls 
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for restricting the use of inequality (2.7) only for points (E, Y, r - h) E Ds”, g E 
Ch (x) such that (z,.y, t) E int Ds” .We omit the details of the construction of stra- 

tegy U, . Since the value function is unique on set int Ds” and since w* (a) E c 
(Ds) and the closure of int Ds” coincides with Dg, the successive approximations (2. 
4) converge to one limit independently of the initial approximation chosen from w_ (Da). 

The theorem is proved, 
3) Definition 2,~uppose that the function w (e) has been defined on Ds. We 

shall say that function w (a) belongs to set w+ (Ds) if: 

1) w (G Y? 8 G H (5, Y) f or any point (5, y, t) E D&O and w (3, .r1,0) = 
H (5, y) for any point (G Y, 0) E f)s; 

2) w (*) E c (Ds); 
3) a strategy?IJ’ of player-p exists such that for any strategy V of player E the in- 

equalities K (x, y, t 1 U’, V) < w (x, y, t) and w (z.(r, I 1 U’, V), y (T, 

Y I U’, v, t - t) & w (x9 !I, 0 are valid at each point (2, y, t) E Ds” for all 

‘t E IO, ‘t’l with some 7’, t’ E (0, tl. 

Note I.. A certain difference of condition 1) of this definition from the corces- 
ponding condition in Definition 1 is explained by the fact that the inequality w (5, 4, 

t) < H (cc, g), (cc, y, t) E Dso was certainly fulfilled as a consequence of condi- 
tion 3) (see the proof of Theorem 1). 

Lemma 2. Set W+ (Da) is nonempty. 
To prove the lemma it is sufficient to consider the function 

II, (x, y, t) = min max min II (E(x), 9 (0 
U.G&r) -ri(~fE&/) E[O, t1 

(3‘ 1) 

We define the operator @+ : C (De) --f C (Db) by the following rule : for any fimc- 
tion w(-)EC(D8) 

a.+. 0 W (:l,, y, t) = min min max 
*Go, t1 E(*)EA%) 1I(*GA%~ (3.2) 

min {w (E(r), r) (r), r - r), ,~;n~, w (5 (e), q (0))) 

Theorem 3. Operator @, maps 5%’ (Ds) into itself and the inequality @, 
o w (.) < w (.)is valid for any function u* (*> E @‘+ (DC) 

We fix an arbitrary function w. f . ) E_ W, (Ds) and we construct successive ap- 
proximations by the following rule : for n > 0 

ED, 0 E*._r (*) = %(*) 
(3.3) 

We also construct the sequence { U,},“,O of strategies of player P : U. is the stra- 
tegy for which, in accord with Definition 2, the inequality K (2, y, t J Uo, V) & 
W, (z, y, t) is valid at each point (I, y, t) E De’. for any strategy V of player E; 
each of the strategies U,, n > 0 is constructed from strategy U,_, and from approxi- 

mation G,,a (.) by analogy with Sect. 2. By the construction of the sequences {U, 
}Z=O and (G, ( g))~zo the inequality K (2, y, t f U,, v)& Zfi (t, y, t) is valid for 
any n at each point (r, y, t) E Dso for any strategy V of player E. 

Theorem 4. 1. For any initial approximation from PV+ (Do) the successive 
approximation (3.3) converge uniformly on L)s~ to some function w* (.)_ 
Function w* (- ) is continuous on Ds and satisfies the equation 
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a+ 0 w (.) = w(a) (3.4) 

2, Function w* (.) is the value function of the family r6 of game from initial 

states (3, y, t) E int D&" and, consequently, the limit of the successive approxima- 
tions (3.3) is independent of the initial approximation from W, (Da). 

3. For any e > 0 there exists N such that for n > I\i strategy u, is an a-optimal 
strategy of player P in each game of family I’s. 

C or o 11 a r y (from theorem 2 and 4). The common limit w* ( * ) of the successive 

approximations (2.4) and (3.3) is the value function of the family of games from initial 

states (5, y, t) E Ds" and in each game of this family the e-optimal strategies can 
be found by using the strategy sequences { Vn}rzO and (U,}z=,. 

Proof . Since W* (, ) is the common limit of the successive approximations (2. 

4) and (3.3). for any E > 0 we can find N such that for all n >, Nthe inequalities 

K (x, y, t I u, I’,) & wn (2, y, t) > w* (G Y, t) - 8 

K (x, Y, t I um V) q fun (5, y, t) < w* (I, Y, t) + 8 

are valid at each point (x, Y, 1) E D,” for any strategies U and ir. This proves the requi- 

red statement. 
Note 2 if we are interested only in the solution of the game from the initial state 

(G, YO, T), then, as we see from the corresponding cons~c~ons, to determine the 

game’s value and the e-,optimal strategies there is no need to imbed the state (%I. r(n, 
T) into set Da but it is sufficient to imbed it into set D. where 

x2 = &, Tf T-f (20) x CT-’ (yo) x {t} 

State (x0, yo, T) was imbedded into set D, solely for the purposes of the proof. 
Note 3 . Theorems 2 and 4 contain the proof of the existence of the game’s 

value and of the E-optimal strategies, In contrast to [7-g], here we have proposed a 
construction method for strategies solving, in the sense of the third assertions in Theo- 
rems 2 and 4, the pursuit game being analysed. In addition, in those papers, treating 
the differential game as the limiting case of an n- step game, an essential condition 

in the proof of the limit theorems was that the step length in the r-step game tends to 
zero as fz -f 03. Here, however, as we see, we did not assume the a priori ~lfillment 

of any such similar conditions. 
4. Theorem 5. Let a function w* (s) be defined and continuous on 

Rn x R" x R,l. Also let w* (5, y, t) & H (xc, Y) for all (z, y, t) E 

Rn X R" x R+l and W* (z, y, 0) = H (z-, y)for all(x, y) E R” Y R”. Then 
the following statements are equivalent. 

1. Function w* (.) is the value function R" x R" X R+l. 
2. Function w* (a) satisfies the system of equations 

cD_ow(*) =w(*), dD,*w(.) = W(‘) 
(4.1) 

3, Function w* (.) satisfies the equation 

@_ 0 wl(*) = o,, 0 w (a) (4.2) 
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Proof. The implication 1. ~9 2 follows from Theorem :! and /1. The implication 
2. __,>I can be proved by introducing two auxiliary multistep games progressing 

turn-by-turn: in one game player P takes the first turn and in the other, player & 
(the latter auxiliary game was already mentioned in the proof of Theorem 2). Implica- 
tion 2. + 3 is obvious. Let us show that 3. =+ 2, Suppose that function w* (*) 
satisfies Eq.(4.2). We take an arbitrary point (2, y, t) E fi’” X R"" X R:', then, 

allowing for the inequality n>* (z, Y, t) .< fi (3, y), we obtain 

lL?* (T, y, t) = min {w* (IL., y, 1), H (3, y)} & @_ o ru* (2, Y, tf = 

Cg,0-zu* (z, y, tj < min {w* (z, y, t), fi (4 Y)) = W* (5, yt 0 

Consequently, function W* ( *) satisfies system (4.1). The theorem is proved. 
N o t e . 4. The method of successive approximations of the value function or of 

the payoff minimax was examined in [l, 21 for a game of encounter at a specified in- 
stant, having the general game dynamics:r’ = f (2, 81, v). In this connection we note that 
if the exposition in [4,9] is followed, then the results of the present paper can be carried 
over without essential changes to the differential game with game dynamics of general 
form (under a saddle-point condition for the small game [4]) and, respectively, with 

a payoff function n%=isrI 11 (.r (~11. We note as well that the approach proposed here 

to the solving of the pursuit game being considered, as well as the similar approaches 

in [l-3,5] in which other formulations of the game problems of dynamics were exami- 
ned, enables us to find the solution of both regular (see [4. I] ) as well as nonregular 

game problems. 
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